
Procedural Fracturing and Debris Generation for Kung-Fu Panda
Lawrence Lee and Nikita Pavlov

DreamWorks Animation

Figure 1: Bridge destruction sequence from Kung-Fu Panda

1. Abstract
Several sequences in Kung-Fu Panda called for large-scale
destruction that encouraged the debris to be generated by
procedural methods but also allowed a high degree of
artistic control. In this sketch, we outline such a method for
fracturing a model into debris and a system for generating
secondary debris when the large pieces collide or break
apart.

2. Primary debris
The goal was to allow the user to fracture a model by
quickly roughing in the size and shape of the debris pieces,
and then procedurally filling in the final shape using the
fracture system.

2.1. User input
The system uses a 3D painting program as the primary
method of user input because it allows us to match the
fracture pattern given by the art director more accurately.
Discrete colors are painted on the unfractured model to
specify “regions” that correspond to debris pieces. The
regions can be painted with as much or as little detail as the
situation calls for. Unpainted regions are filled in
procedurally in the next step.

2.2. Cutting volume generation
To generate the cutting volumes, we first set up a voxel grid
based on the bounding box of the unfractured model. The
unfractured surfaces are then voxelized such that the voxels
are seeded with the painted color of the surface. Simple
rules inspired by Cellular Automata (CA) concepts are used
to “grow” the regions until all voxels are filled in. The
voxels of each region are then converted to polygon meshes
using the marching cube algorithm.

2.3. Final debris piece generation
Finally, the unfractured model is converted to a closed
polymesh which inherits the texture coordinates and
geometric normals. Intersecting the resulting polymesh
with the cutters generated in section 2.2 using constructive
solid geometric algorithm (CSG), we arrive at our final
debris pieces. Procedural textures based on reference
positions and normals are then applied to the newly
exposed internal surfaces using triplanar projection. The
end result would work regardless of how we fracture the
original geometry.

3. Secondary debris
We use the larger debris to procedurally generate smaller
chunks of rock and pebbles coming off when these pieces
collide and/or crack open.

3.1. Secondary debris from collisions
For any two pieces of debris, we compute the intersecting
region, reduce it to the exterior edge, and store that as
particle data. We define each point's normal as the average
of normals at the intersecting surfaces, storing it in the
particles to determine emission direction. The impact force
is calculated based on per-vertex velocity of the intersecting
surfaces near each particle, which is later used to scale
debris emission velocity.

3.2. Secondary debris from separating pieces
For any two pieces of debris A and B that are close enough
to intersect, we build a table that tracks, for every vertex in
A, the distance to the closest vertex in B. As soon as this
distance exceeds a certain threshold, indicating that the
surfaces are separating, we place a particle between the
two vertices, its normal facing outward as described above.

4. Additional credits
David Allen, Wes Burian, Saty Raghavachary.

Figure 2: Painted regions for the bridge and a stalactite

 Figure 4: Intersection between two pieces

Figure 3. Fractured pieces (color-coded for visualization)

